Calculation Policy

At Redfield Educate Together we believe that we should support all children to aspire to be mathematicians. We will help children to explore the connections between the different areas of maths and develop their mathematical thinking. We will develop the children's multidimensional fluency, ensuring that children have efficient, accurate and flexible methods for solving problems. Mathematical concepts will be explained using a variety of appropriate representations and models to aid understanding. We will ensure that a variety of procedural and conceptual maths is taught so that the children understand the "how" and the "why" of what they are doing. We hope to inspire a life-long love of mathematics and ensure the children have the skills to solve real-life, everyday problems as they grow older.

The Redfield Educate Together calculation policy contains the written procedures that will be taught within our school alongside practical resources. It has been written to ensure consistency and progression throughout the school and reflects a whole school agreement.

The document is broken down into addition, subtraction, multiplication and division. Each operation is then broken down into skills and each skill has a dedicated image showing representations and models that could be used to effectively teach that concept. There is an overview of the progression of skills linked to year groups to support cohesion across the school and a glossary of terms, representations and models that can support the teaching of different concepts.

Addition

Skill	Year	Representation and models
Add two 1-digit numbers to 10	1	Part-whole model, Bar model, Number shapes, Ten frames (within 10), Bead strings (10), Number tracks
Add 1 and 2-digit numbers to 20	1	Part-whole model, Bar model, Number shapes, Ten frames (within 20), Bead strings (20), Number tracks, Number lines (labelled), Straws
Add three 1-digit numbers	2	Part-whole model, Bar model, Number shapes, Ten frames (within 20),
Add 1 and 2-digit numbers to 100	2	Part-whole model, Bar model, Number lines (labelled), Number lines (blank), Straws, Hundred square
Add two 2-digit numbers (blank),		
Add with up to 3-digits	2	Part-whole model, Bar model, Number lines Straws, Base 10, Place value counters
Add with up to 4-digits	4	Part-whole model, Bar model, Basse 10, Place value counters, Column addition
Add with more than 4-digits	5	Part-whole model, Bar model, Basse 10, Place value counters, Column addition
Add with up to 3 decimal places	5	Part-whole model, Bar model, Place value counters, Column addition

Skill: Add 1-digit numbers withi								Year: 1
$4+3=7$								When adding numbers to 10 , children can explore both aggregation and augmentation. The part-whole model, discrete and continuous bar model, number shapes and ten frame support aggregation. The combination bar model, ten frame, bead string and number track all support augmentation.

Skill: Add 1 and 2-digit numbers to 20	Year: 1/2
$8+7=15$ $8+7=15$ 2) 5 $+2+5$ $8+7=15$ 25	When adding onedigit numbers that cross 10 , it is important to highlight the importance of ten ones equalling one ten. Different manipulatives can be used to represent this exchange. Use concrete resources alongside number lines to support children in understanding how to partition their jumps.

Skill: Add three 1-digit numbers \quad| Year: 2 |
| :--- |

Skill: Add 1-digit and 2-digit numbers to 100										Year: $2 / 3$
$38)$ 5 ? 38 $38+5=43$										When adding single digits to a two-digit number, children should be encouraged to count on from the larger number. They should also apply their knowledge of number bonds to add more efficiently $\text { e.g. } 8+5=13 \text { so } 38$ $+5=43$ Hundred squares and straws can support children to find the number bond to 10 .

Subtraction

Skill	Year	Representation and models
Subtract 2 1-digit numbers to 10	1	Part-whole model, Bar model, Number shapes, Ten frames (within 10), Bead strings (10) Number tracks
Subtract 2 1-digit numbers to 20	1	Part-whole model, Bar model, Number shapes, Ten frames (within 20), Bead strings (20) Number tracks, Number lines (labelled), Straws
Subtract 2 1-digit numbers to 100	2	Part-whole model, Bar model, Number lines (labelled), Number lines (blank), Straws, Hundred square
Subtract two 2-digit numbers	2	Part-whole model, Bar model, Number lines (blank) Straws, Base 10, Place value counters, Column addition
Subtract with up to 3-digits	3	Part-whole model, Bar Model, Base 10, Place value counters, Column addition
Subtract with up to 4-digits	4	Part-whole model, Bar Model, Base 10, Place value counters, Column addition
Subtract with more than 4- digits	5	Part-whole model, Bar Model, Place value counters, Column addition
Subtract with up to 3 decimal places	5	Part-whole model, Bar Model, Place value counters, Column addition

Times Tables

Skill	Year	Representation and models
Recall and use multiplication and division facts for the 2- times table	2	Bar model, Number shapes, Counters, Money, Ten frames, Bead strings, Number lines, Everyday objects
Recall and use multiplication and division facts for the 2- times table	2	Bar model, Number shapes, Counters, Money, Ten frames, Bead strings, Number lines, Everyday objects
Recall and use multiplication and division facts for the 10- times table	2	Hundred square, Number shapes, Counters, Money, Ten frames, Bead strings, Number lines, Base 10
Recall and use multiplication and division facts for the 3- times table	3	Hundred square, Number shapes, Counters, Bead strings, Number lines, Everyday objects
Recall and use multiplication and division facts for the 4- times table	3	Hundred square, Number shapes, Counters, Bead strings, Number lines, Everyday objects
Recall and use multiplication and division facts for the 8- times table	3	Hundred square, Number shapes, Bead strings, Number lines, Everyday objects
Recall and use multiplication and division facts for the 6- times table	4	Hundred square, Number shapes, Bead strings, Number lines, Everyday objects
Recall and use multiplication and division facts for the 7- times table	4	Hundred square, Number shapes, Bead strings, Number lines
Recall and use multiplication and division facts for the 9- times table	4	Hundred square, Number shapes, Bead strings, Number lines
Recall and use multiplication and division facts for the 11- times table	4	Hundred square, Base 10, Place value counters, Number lines
Recall and use multiplication and division facts for the 12- times table	4	Hundred square, Base 10, Place value counters, Number lines

Skill: 6 times table															Year: 4
														10	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the six times table, using manipulatives to support. Make links to the 3 times table, seeing how each multiple is double the threes. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.
					11		13	4	15	\%		()	9	20	
					21	22	25	(2)	25	26	27	28		(1)	
					5	32	33	34	35	(3)	37	38	39	40	
						(9)	43	44	4	46	47	,	49	50	
					51	52	53	(3)	55	56	57	58		2	
6	12	18	24	30	61	62	63	64	65	66	67	68	69	0	
36	42	48	54	60		2	Is	74	T	7	7	78	T9	50	
						82	83	86	85	86	87	${ }^{88}$	89	∞	
66	72	78	84	90			93	94	95			98	99		
-000000-000000-0000000-															

Skill: 9 times table														Year: 4
080808089006					1		34		6		8			Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square Look for patterns in the nine times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd, even pattern within the multiples.
					\#1	12	3	15	$\%$	\bigcirc	(1)	1	20	
					${ }^{2}$	22	324	25	26	(2)	28	29	30	
					31	12	3	4s	(3)	37	s8	39	∞°	
					4	4	34	(3)	46	47	48	49	50	
9	18	27	36	45	51	52	36	55	56	5	58	59	50	
54	63	72	81	90	61	62	(3) 6	46	6	G	6	69	2	
$-000000000-000000000-000000000-$														

Skill: 7 times table														Year: 4 Encourage daily counting in multiples both forwards and backwards, supported by a number line or a hundred square. The seven times table can be trickier to learn due to the lack of obvious pattern in the numbers, however they already know several facts due to commutativity. Children can still see the odd, even pattern in the multiples using number shapes to support.
					1	2	3	4	5	6	(7) 8	9	10	
					11	12	15	(1)	15	\%	I7 18	79	20	
					(3)	22	23	24	25	26	27 (3)	29	30	
					31	32	33	34	(1)	36	37.38	39	40	
					41	(1)	43	44	as	46	47 as	(6)	50	
7	14	21	28	35	51	52	53	54	55	(9)	5758	59	60	
42	49	56	63	70	61	62	(3)	64	65	66	6768	69	-	
 -0000000-0000000-0000000-														

Skill: 11 times table																Year: 4
11	22	33	44	55	66		2	3	4	5	6	7	8	9	30	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the eleven times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support. Also consider the pattern after crossing 100
							Q	15	14	15	16	17	18	19	20	
77	88	99	110	121	132		(2)	23	24	25	26	27	28	29	30	

Multiplication

Skill	Year	Representations and models
Solve one-step problems with multiplication	$1 / 2$	Bar model, Number shapes, Counters, Ten frame, Bead strings, Number lines
Multiply 2-digit by 1-digit numbers	$3 / 4$	Place value counters, Base 10, Short written method, Expanded written method
Multiply 3-digit by 1-digit numbers	4	Place value counters, Base 10, Short written method
Multiply 4-digit by 1-digit numbers	5	Place value counters, Short written method,
Multiply 2-digit by 2-digit numbers	5	Place value counters, Base 10, Short written method, Grid method
Multiply 2-digit by 3-digit numbers	5	Place value counters, Short written method, Grid method
Multiply 2-digit by 4-digit numbers	$5 / 6$	Formal written method

| | Year: $1 / 2$ |
| :--- | :--- | :--- | :--- |

Skill: Multiply 4-digit numbers by 1-digit numbers \begin{tabular}{l}

\multicolumn{1}{c|}{| Year: 5 |
| :--- |}

When multiplying 4-
digit numbers, place
value counters are
the best manipulative
to use to support
children in their
understanding of the
formal written
method,
If children are
multiplying larger

numbers and

struggling with their

times tables,

encourage the use of

multiplication grids so

children can focus on

the use of the written

method.
\end{tabular}

Division

Skill	Year	Representation and model
Solve one-step problems with division (sharing)	$1 / 2$	Bar model, Real life objects, Arrays, Counters
Solve one-step problems with division (grouping)	$1 / 2$	Real life objects, Number shapes, Bead strings, Ten frames, Number lines, Arrays, Counters
Divide 2-digits by 1-digit (no exchange sharing)	3	Straws, Base 10, Bar model, Place value counters, Part- whole model
Divide 2-digits by 1-digit (sharing with exchange)	3	Straws, Base 10, Bar model, Place value counters, Part- whole model
Divide 2-digits by 1-digit (sharing with remainders)	$3 / 4$	Straws, Base 10, Bar model, Place value counters, Part- whole model
Divide 2-digits by 1-digit (grouping)	$4 / 5$	Place value counters, Counters, Place value grid, Written short division
Divide 3-digits by 1-digit (sharing with exchange)	4	Base 10, Bar model, Place value counters, Part-whole model
Divide 3-digits by 1-digit (grouping)	$4 / 5$	Place value counters, Counters, Place value grid, Written short division
Divide 4-digits by 1-digit (grouping)	5	Place value counters, Counters, Place value grid, Written short division
Divide multi-digits by 2-digits (short division)	6	Written short division, List of multiples
Divide multi-digits by 2-digits (long-division)	6	Written long division, List of multiples

Skill: Solve 1-step problems using division (grouping)	Year: $1 / 2$

| Skill: Divide 2-digits by 1-digit (sharing with no exchange) | Year: $\mathbf{1 / 2}$ |
| :--- | :--- | :--- |
| Tens | When dividing larger
 numbers, children can
 use manipulatives
 that allow them to
 partition into tens and
 ones. |
| Straws, Base 10 and
 place value counters
 can all be used to
 share numbers into
 equal groups. | |
| Part-whole models
 can provide children
 with a clear written
 method that matches
 the concrete
 representation. | |

Skill: Divide 2-digits by 1-digit (grouping) | Year: $4 / 5$ |
| :--- |
| $\mathbf{5 2} \div \mathbf{4}=13$ |
| When using the short |
| division method, |
| children use grouping |
| Starting with the |
| largest place value, |
| they group by the |
| divisor. |

Educate Together

Glossary of terms

Addend- A number to be added to another.

Aggregation- combining two or more quantities or measures to find a total.

Array- An ordered collection of counter, cubes or other items in rows or columns.

Augmentation- increasing a quantity or measure by another quantity.

Commutative- numbers can be added in any order.

Complement- in addition, a number and its complement make a total e.g 300 is the complement to 700 to make 1,000 .

Difference- the numerical difference between two numbers is found by comparing the quantity in each group.

Dividend- in division, the number that is divided.

Divisor- in division, the number by which another is divided.
Exchange- Change a number or expression.
Factor- A number that multiplies with another to make a product.

Multiplicand- In multiplication, a number to be multiplied by another.

Minuend- A quantity or number from which another is subtracted.

Partitioning- Splitting a number into its component parts.

Product- The result of multiplying one number by another.

Quotient- The result of division.

Reduction- Subtraction as take away.

Redfield

Educate Together

Remainder- The amount left over after a division when the divisor is not a factor of the dividend.

Scaling- Enlarging or reducing a number by a given amount, called the scale factor.

Subtrahend- A number to be subtracted from another.

Subitise- Instantly recognise the number of objects in a small group without needing to count.

Sum- The result of an addition.

Redfield
Educate Together

Glossary of representations and models (addition and subtraction).

Part-Whole Model

Bar Model (multiple)

Discrete

Continuous

4

$7-3=4$

Benefits

The multiple bar model is a good way to compare quantities whilst soil unpicking the structure.

Two or more bars can be drawn, with a beacket labelling the whole positioned on the right hand side of the bars. Smaller numbers can be represented with a discrete bar model whilst continuous bar models are more effective for larger numbers.

Muitiple bar models can also be used to represent the difference in subtraction An arrow can be used to model the ifference

When working with smaller numbers, children can use cubes and a discrete model to find the difference. This supports children to see how counting on can help when finding the dfference.

Number Shapes

Benefits

Number shapes can be useful to support children to subitise numbers as well as explore aggregation. partitioning and number bonds.

When adding rumbers, children can see how the parts come together making a whole. As children use number shapes more often they can start to subitise the total dve to their familiarity with the shape of each number.

When subtracting rumbers, children can start with the whole and then place one of the parts on top of the whole to see what port is missing. Again, children will start so be able to subilise the part that is missing due to their famliarify with the shapes.

Children can also work systematically to find number bonds. As they increase one number by 1 they can see that the other number decreases by 1 to find all the possible number bonds for a number.

Cubes

$$
7=4+3
$$

$$
7=3+4
$$

$7-3=4$

$7-3=4$

Ten Frames (within 10)

Benefits

When adding and subtracting within tQ the ten trame can support children to understand the dfferent structures of addition and subtraction

Using the language of parts and wholes represented by objects on the ten frame introduces children to aggegaion and partioning.
Aggregation is a form of addition where parts are combined together to make a whole. Partitioning is a form of subtraction where the whole is split into parts. Using these structures, the ten frame can erable childeen to find all the number bonds for a number.

Children can also use ten frames to look at augenentation (incressing a number) and sake-awiy (decreasing a number! This can be introduced through a first then, now structure which shows the change in the number in the Ther' stage. This can be put into a story structure to help children understand the change eg. First there were? cars. Then, 3 cars left. Now, there are 4 cars.

Ten Frames (within 20)

Benefits

When adding two single digts children can make each number on separate ten frames before moving part of one number to make 10 on one of the ten frames. This supports children to see how they have partitioned one of the numbers to make 10 , and makes linis to effective mental methods of addition.

When subtracting a one-digi number from a two-dgh number, firstly make the larger number on 2 ten frames Remove the imaller number, thinking carefully about how you have partitioned the number to make 10, this supports mental methods of subtraction.

When adding three single-dige numbers, children can make each number on 3 separate 10 frames before considering which order to add the numbers in. They may be able to find a rumber bond to 10 which makes the calculation easier. Once again, the ten frames support the link to effective mental methods of addition as well as the importance of commutativity

Bead Strings

Benefits

Different sloes of bead strings can support children at different stages of addition and subtraction

Bead strings to 10 are very effective at helping children to investigate number bonds up to 10 .
They can help children to systematcally find all the number bonds to 10 by moving one bead at a time to see the different rumbers they have partioned the 10 beads into eg $2+8=10$, move one bead, $3+7=10$.

Bead strings to 20 work in a similar wiay but they also group the beads in frees. Children can apply their knowledge of number bonds to 10 and see the links to number bonds to 20 .

Bead strings to 100 are grouped in ters and can support children in number bonds to 100 as well as helping when adding by making ten. Bead strings can show a link to adding to the next 10 on number lines which supports a mental method of addition

Number Tracks

$8+7=15$
$m \times r n$

Benefits

Number tracks are useful to support chldren in ther understarding of asgmentation and reduction.

When adding chldren count on to find the sotal of the numbers. On a number track, children can place a counter on the starting number and then count on to find the total.

When subtracting children count back to find their answer. They start at the minvend and then take away the subtrahend to find the difference between the numbers.

Number tracks can work well alongside ten trames and bead strings which can also model counting on or counting back

Playing board games can help children to become farnilar with the ides of counting on using a number track before they move on to number lines.

Number Lines (labelled)

Benefits

Labelied number lines support children in their understanding of addition and subtraction as augmentation and reduction.

Children can start by counting on or back in ones, up or down the number line. This skill links diectly to the use of the number track.

Progressing further, children can add numbers by jumping to the neavest 10 and then jumping to the total. This links to the making 10 method which can also be supported by ten frames. The imaller number is partitioned to support children to make a number bond to 10 and to then add on the remaining part.

Children can subtract rumbers by firstly jumping to the nearest 10 Again, this can be supported by ten frames so children can see how they partion the smaller number into the two separase jumps.

Number Lines (blank)

$$
35+37=72
$$

$35+37=72$

$72-35=37$

Benefits

Blank rumber lines provide children with a structure to add and subtract numbers in smaller parts.

Developing from labetled rumber tines, childrein can add by jumping to the nearest 10 and then adding the rest of the rumber either as a whole or by adding the tens and ones separately:

Children may also count back on a number line to subtract, again by fumping to the nearest 10 and then subtracting the rest of the number.

Blank rumber ines can also be used effectively to help children subtract by finding the difference between numbers. This can be done by starting weth the smalier number and then counting on to the larger number. They then add up the parts they hive counted on to find the dfference between the numbers.

Straws

$$
7+6=13
$$

bundle together groups of 10
$42-17=25$

Benefits

Straws are an effective way to support children in their understanding of exchange when adding and subtracting 2-digt numbers.

Children can be introduced to the ides of bundling groups of ten when adding smaller numbers and when representing 2 -digit numbers. Use elastic bands or other bies to make bundies of ten straws.

When adding numbers, children bundle a group of 10 straes to represent the exchange from 10 ones 101 ten. They then add the individual straws (ones) and bundles of straws (tens) to find the total.

When subtracting numbers, children unbundle a group of 10 straws to represent the exchange from 1 ten to 10 ones.

Straws provide a good stepping stone to adding and subtracting with Base 10/Dienes

Base 10/Dienes (addition)

Benefits

Using Base 10 or Dienes is an effective wisy to support children's understanding of column addition. It is important that children wrise out their calculations alongside using or drawing Base 10 so they can see the clear links between the witten method and the model.

Children should first add without an exchsige before moving on to addition with exchange. The represemation becomes less efficient with lagger numbers due to the size of Base 10 in this case, place value counters may be the better model to use.

When adding always start with the smallest place value column. Here are some questions to support childrenHow many ones are there altogether?
Can we make an exchange? (Yes or No)
How many do we exchange? (10 ones for 1 ten, show exchanged 10 in tens column by writing 1 in column) How mary ones do we have left? (Write in ones column) Repeat for each column.

Base 10/Dienes (subtraction)

Abstract

Benefits Using Base 10 or Dienes is an effective way to support childrenk understanding of column subtraction. It is important that children write out their calculations alongside using or drawing Base 10 so they can see the clear links between the writsen method and the model

Children should fers subtract without an exchange before moving on to subtraction with exchange. When building the model, children should pust make the miruend using Base 10 , they then subtract the subtrahend. Highlight this dfference to addrition to avoid errors by making both numbers. Chidren start with the smallest place value column When there are not enough ones/sens/hundreds to subtract in a column, children need to move to the column to the left and exchange eg exchange 1 ten for 10 ones. They can then subtract efficiently This modet is efficient with up to 4 -digt numbers. Place value counters are more efficient with larger numbers and decimals.

Place Value Counters (addition)

3.65

$$
\begin{array}{r}
+2.41 \\
\hline 6.06
\end{array}
$$

Benefits

Using place value counters is an effective way to support childrents understanding of column addition. It is important that children wrine out their calculations alongside using or drawing counters so they can see the clear links between the writsen method and the modet.

Children should first add without an euchange before moving on to addition with exchange. Differect place value counters can be used to represent larger numbers or decimals. If you don't have place value counters, use normal counters on a place value gid to enable children to experience the exchange between columns.

When adding monex childen can also use coims to support their understanding it is important that children consider how the coins link to the written calculation especially when adding decimal amounts.

Place Value Counters (Subtraction)

Benefits

Using place value counbers is an effective way to support childeen's understanding of column subtraction it is important that children wite out their calculabons alongside using or drawing counters so they can see the clear links between the written method and the model.

Children should first subtract without an exchange before moving on to suberaction with eachange. If you dont have place value counters, use normal counters on a place value grid to erable children to experience the exchange between columns.

When bulding the model, children should just make the minuend using counsers, they then subtract the subtrahend. Chidren start with the smallest place valee column When there are not enough ones/ters/huindreds to subtract in a column, children need to move to the column to the left and eacharge eg, eachange 1 sen for t0 ones. They can then subtract efficiently.

Glossary of representations and models (multiplication and division).

Number Shapes

$5 \times 4=20$
$4 \times 5=20$

$5 \times 4=20$
$4 \times 5=20$

$18 \div 3=6$

Benefits

Number shapes support childrerts understanding of multiplication as repeated addivion.

Childen can buld multiplications in a row using the number shaper. When using odd numbers, encourage children to interlock the shapes so there are no gaps in the roax They can then use the tens number shapes along with other necessary shapes over the top of the row to check the total. Using the rumber shapes in multiplication can support children in discovering patterms of multiplication eg odd \times odd $=$ even odd x even $=$ odd, even x even $=$ even.

When dividing number shapes support childrents understanding of division as grouping Children make the number they are dividing and then place the number shape they are dividing by over the top of the rumber to find how many groups of the number there are alrogether eg. There are 6 groups of 3 in 18 .

Bead Strings

$5 \times 3=15$
$15 \div 3=5$
$3 \times 5=15$
$-00000-00000-00000-$
$5 \times 3=15$
$15 \div 5=3$
$3 \times 5=15$

- +5
-0000-9000-9000-0000-0000-

$$
4 \times 5=20 \quad 20 \div 4=5
$$

Benefits

Bead strings to 100 can support children in their understanding of multiplicasion as repeated addtion Chidren can build the multiplication using the beads. The colour of beads supports children in seeing how many groups of 10 they have, to calculase the total more efficiently.
Encourage children to count in multiples as they build the number eg 4,8, 12, 16,20

Children can also use the bead string to count forwards and backwards in multiples, moving the beads as they count.

When dividing, children build the number they are dividing and then group the beads into the number they are dividing by eg 20 divided by 4 - Make 20 and then group the beads into groups of four. Count how many groups you have made to find the answer.

Number Tracks

$6 \times 3=18$
$3 \times 6=18$

$18 \div 3=6$

Benefits

Number tracks are useful to support children to count in multiples, forwards and backwards. Moving counters or cubes along the number track can support children to keep track of their counting Translucent counters help children to see the number they have landed on whilst counting.

When multiplying childeen place their counter on 0 to start and then count on to find the product of the rumbers.
When dividing, children place their counser on the rumber they are dividing and the count back in jumps of the rumber they are dividing by untif they reach α Children record how many pumps they have made to find the answer to the division

Number tracks can be useful with smaller multiples but when reaching larger numbers they can become less efficient

Number Lines (labelled)

Benefits

Labelled number lines are useful to support children to count in multiples, forwards and backwards as well as calculating single-dget multoplications.

When multiplying children statt at 0 and then count on to find the product of the numbers.
When dividing, start at the number they are dividing and the count back in jumps of the number they are dividing by unal they reach α
Children recoed how many jumps they have made to find the answer to the division.

Labelled number lines can be useful with smaller multiples, however they become inefficient as numbers become larger due to the required size of the number line.

Number Lines (blank)

A blue car travels 12 miles.
A red car 4 times less.
How far does the red car travel?

Benefits

Chidren can use black number lines to represent scaling as multiplication or division.

Blank number lines with intervals can support chaldren to represent scaling accurately. Children can label intervals with multiples to calculate scaling problems.

Blank number lines without intervals can also be used for children to represent scaing.

Base 10/Dienes (multiplication)

24

Benefits

Using Base 10 or Denes is an effective way to support children's understanding of column muloplication. it is important that children write out their calculation alongside the equipment so they can see how the concrete and written representations match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient dve to the amount of equipment and rumber of excharges reeded.

Base 10 also supports the area model of multiplication well. Children use the equipment to build the number in a rectargular shape which they then find the area of by calculating the total value of the pieces This area model can be linked to the grid method or the formal column method of mulsplying 2 -diges by 2 -digits.

Base 10/Dienes (division)

$68 \div 2=34$
Using Base 10 or Dienes is an effective wiy to support childrents understanding of division

When numbers become larger, it can be an effective way to move children from representing numbers as ones towards represerting them as tens and ones in order to divide. Children can then share the Base $10 /$ Dienes between dfferent groups eg, by drawing circles or by rows on a place value gid.

When they are sharing, children start with the larger place value and work from left to right. If there are any left in a column, they exchange eg, one ten for ten ones When recording, encourage children to use the partwhole model so they can consider how the number has been partitioned in orfer to divide. This will support them with mertal methods

Place Value Counters (multiplication)

Benefits

Using place valve counters is an effective way to support childrens undersanding of column muloplication it is important that children write out their calculation alongside the equipment so they can see how the concrete and witten match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes brcomes less efficient due to the amount of equipment and number of exchanges reeded The counters should be used to suppont the understanding of the writsen method rather than support the arithmetic.

Place value counters also support the ares model of multiplicason wel Children can see how to muliply 2 . dgit numbers by 2 -dgi numbers.

Place Value Counters (division)

1223
44892

Benefits

Using place value counters is an effective wiy to support childrens understanding of division.

When working with smaller numbers, children can use place value counters to share between groups. They start by sharing the larger place value column and work from left to right. If there are ary counters left over once they have been shared they exchange the counter eg. erchange one ten for ten ones. This method can be Inked to the part-whole model to support children to show their thinking.

Place value counters also support children's understanding of short division ty grouping the coumters rather than sharing them Chldren work from left no right through the place value colurns and group the counters in the ramber they are dividing by lif there are ary counters left over after they have been grouped, they exchange the counter eg exchange one hundred for ten tens.

